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Die hinreichende Wasserlöslichkeit kleiner organischer Moleküle ist entscheidend bei der Entwicklung neuer Arzneimittel. 
Viele Projekte der Wirkstoffentwicklung scheitern in relativ späten Entwicklungsphasen wegen unzureichender Löslichkeit 
in Wasser. Aus diesem Grunde ist die Vorhersage der Wasserlöslichkeit aus der 2-D Struktur wünschenswert. Wir stellen ein 
Modell zur Vorhersage der Wasserlöslichkeit vor, welches wir mit Methoden des maschinellen Lernens auf chemischen 
Datenbanken entwickelt haben. 
 
1. Introduction 

 The aqueous solubility of small organic molecules is 
a key physical property for successful drug develop-
ment because it affects directly the bioavailability. Poor 
solubility has been identified as a main problem in 
many drug development projects. It is therefore desir-
able to determine the solubility of the drug candidates 
as early as possible and there is much interest in the 
development of models that predict aqueous solubility 
directly from the structure [1]. 
 Based on a data set containing experimentally de-
termined aqueous solubilities of more than 14.000 
compounds we build a machine learning model that 
uses 2D-molecular descriptors to predict solubility. We 
prefered simple countable molecular descriptors that 
could be calculated without knowledge of the 3-D 
structure and having a simple chemical interpretation 
(functional group counts, element counts, molecular 
properties). 
 We built ensembles of regression trees which are 
known to be robust against overfitting and that work 
quite fast. In order to test our model on “unseen” data, 
we split the entire data set in a training set that was 
used for model training and a test set that was used to 
validate the trained model. 
 
2.  Database 

 We extracted 24.949 measurements of aqueous 
solubility for 14.186 unique compounds from the Beil-
stein [2] and the Physprop database [3]. In the case of 
multiple measurements we took the median as a ro-
bust estimate of the solubility.  
 

  
Figure 1: Distribution of log SW for the database. 
 
 The unit of the solubility measurement is mol/l and 

we took the logarithm of these values (log SW). The 
distribution of the log SW for the data set is shown in 
figure 1. 
 
3. Molecular Descriptors and Feature Selection 

 According to Todeschini and Consonni a molecular 
descriptor is the final result of a logical and mathemati-
cal procedure which transforms chemical information 
encoded within a symbolic representation of a mole-
cule into a useful number or the result of some stan-
dardized experiment [4]. 
 For characterization of physical and chemical proper-
ties of the compounds in the data base we had to se-
lect some meaningful and interpretable candidates 
among the rich variety of molecular descriptors. The 
most relevant descriptors are listed in Table I with the 
ranking based on the variable importance. The final 
model included discrete and countable descriptors like 
element counts, molecular property counts, Ghose-
Crippen AlogP counts [6] and electrotopological state 
counts from Kier and Hall (ES-Counts) [7]. All molecu-
lar descriptors were calculated using the Pipeline Pilot 
software [5]. 
 Our feature selection approach follows in principle 
the method of variable importance as proposed by 
Breiman [8]. The underlying idea is to select descrip-
tors according to their prediction errors after random 
permutation of these descriptors. Briefly, a regression 
model is trained which uses all descriptors as input 
variables and the prediction error on a hold out data 
set is calculated. In a second step, the same is done 
after the successive permutation of the descriptor val-
ues. The relative increase of the prediction error calcu-
lated using permutated descriptor values compared to 
that found for the original descriptor set is a measure 
of the variable importance following the idea that the 
most discriminative descriptors are the most important 
ones. 
 
4. Ensembles of Trees 

 Trees are conceptually simple but powerful tools for 
classification and regression. For our purpose we use 
the classification and regression trees (CART) as de-
scribed in Breiman et al. [9]. The main feature of the 
CART algorithm is the binary decision role that is intro-
duced at each tree node with respect to the information 
content of the split. In this way the most discriminating 
binary splits are near the tree root and they are forming 
a hierarchical decision scheme. It is known that trees 
have a high variance, so they benefit from the ensem-



ble approach [10]. A particular kind of tree ensemble is 
also known as random forest. The free parameters of 
the tree models are the number of splits, the impurity 
measure and the split criterion. 
 We built ensembles of regression trees in order to 
improve the accuracy of the final solubility model. 
These ensembles differ from the well known random 
forest by the training procedure. Our model training 
scheme is a mixture of bagging [8] and cross-
validation. Bagging or bootstrap aggregating improves 
the final model by combining several trees that were 
trained on randomly generated subsets of the entire 
training set. We extended this approach by applying a 
cross-validation scheme for selecting the best perform-
ing tree on each subset and subsequently we com-
bined these selected trees to an ensemble. In K-fold 
cross-validation, the data set is partitioned into K sub-
sets. From these K subsets, a single subset is retained 
to test the predictive power of the trees. The remaining 
K-1 subsets are used for model training. The cross-
validation process is repeated K times with each of the 
K subsets used only once as the validation data. The 
training set and the validation set contain randomly 
drawn subsets of the data without replications. The 
size of each validation set was 25% of the entire data 
set. The size of the test set was 50% of the entire data-
set. 
 In every CV-fold we train several different trees with 
a variety of model parameters (i.e. the number of splits 
and the split criterion). In each fold we select only one 
tree to become a member of the final ensemble, 
namely the best tree with respect to the modelling error 
on the validation set. 
The test set for the final model validation is held out 
from the entire training as shown in figure 2. 
 
 

Figure 2: The data is divided in the training and the validati-
o

5.  Results  

 After feature selection we ended up with 20 descrip-
tors used to train the solubility model. The descriptors 
are listed in table I. We split the data set in two parts 
each containing 7093 samples and used the first part 
for training and the second part for testing the model. 
We trained a tree ensemble with 151 trees and calcu-
lated the root mean squared prediction errors (RMSE) 
for both data sets. Further we calculated the amount of 
compounds with a prediction error below 1 log-unit. 
The results are listed in table II. 
 
Score Descriptor (number of …) 
3,59     atoms 
2,99     bonds 
2,73     H 
2,05     molecular weight 
1,56     C 
1,32     O 
0,99     C in CH3 
0,82     aromatic rings 
0,77     aromatic bonds in R--CH--R 
0,69     ES Count ssCH2 
0,65     CH2R2 
0,45     H attached to C0sp3 
0,33     ES Count ssO 
0,32     CH3 attached to a heteroatom 
0,30     ring bonds 
0,24     Hetero atoms in R--CX—R 
0,22     H attached to heteroatom 
0,19     N 
0,19     H acceptors 
0,19     O in alcohol 

 

Table I: The 20 descriptors of the solubility model. The 
score was calculated with the feature selection scheme as 
described in section 3.  
 

n subsets for the cross-validation. The test set is held out 
from the training. 
 

 

Table II: The root mean squared prediction error (RMSE) 
and the amount of compounds with a prediction error below 
1 log-unit. 
 
 These results are comparable with that of other 
groups using a different machine learning approach  
but the same data source [11]. We have to keep in 
mind that the experimental error in measuring aqueous 
solubility is believed to be at least 0.5 log units [12] and 
can reach even more than 1 log unit [1]. From this 
point of view, a model for aqueous solubility that pre-
dicts about two-thirds of all data inside of the 1 log unit 
is quite good. 

 Training Set Test Set
RMSE 0.8706 1.1745 
Percent in ± 1 log-unit 80.53 66.54 



5.  Discussion 

 

 In this work, we present the use of machine learning 
models to predict aqueous solubility from the 2 D struc-
ture. Based on a database of about 14.000 com-
pounds, we trained a model that achieves good accu-
racy and performance in an out-of-sample test. As 
pointed out by several other groups [1,11,12] the col-
lection of well defined, high quality measurements is 
still the key issue for the development of accurate ma-
chine learning models. 
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