
Time Series Prediction with Ensemble Models
Jörg D. Wichard and Maciej Ogorzałek

Department of Electrical Engineering
AGH University of Science and Technology

al. Mickiewicza 30
30-059 Kraków, Poland

email: JoergWichard@web.de maciej@agh.edu.pl

Abstract— We describe the use of ensemble methods to build
proper models for time series prediction. Our approach extends
the classical ensemble methods for neural networks by using sev-
eral different model architectures. We further suggest an iterated
prediction procedure to select the final ensemble members.

I. INTRODUCTION

Ensemble building is a common way to improve the perfor-
mance of the resulting model for classification and regression
tasks, since it was noticed that an ensemble of individual pre-
dictors performs better than a single predictor in the average.
This is based on the bias-variance decomposition of ensemble
models [1]. Usually an ensemble consists of models taken from
one single class, e.g. neural networks [2], [3], [4], [5], support
vector machines [6] or regression trees [7].
We suggest a different strategy. We train several models from
different model classes and combine them to build the final
ensemble. This is done in order to introduce model diversity
which is the central feature of the ensemble approach [4].
The novelty of our approach consists of building heteroge-
neous ensembles with several model classes combined with
an iterated prediction scheme for final model selection. For
the CATS Benchmark we propose a combined model strategy
in order to cope with the different time scales of the data set.
This paper is organized as follows. In the next Section
we briefly introduce basic concepts of ensemble models. In
Section III we present the models that we use to build the
ensemble and in Section IV-A we describe the model training
and model selection. In the end we demonstrate the results in
section V.

II. ENSEMBLES

If we average the output of several different models fi(x),
we call it an ensemble model

f̂(x) =
K

∑

i=1

ωifi(x). (1)

We further assume that the model weights ωi sum to one
∑K

i=1 ωi = 1. The idea of averaging different models was
developed in the neural network community [2], [3] and later
it was pointed out by Krogh et al. [4], that the generalization
error of the ensemble is lower than the mean of the general-
ization error of the single ensemble members. This holds in
general, independent of the model class.

It is also known, that the generalization error of an ensemble
model could be improved if the predictors on which averaging
is done disagree and if their fluctuations are uncorrelated [1].
To see this we have to investigate the contribution of a single
model in the ensemble to the generalization error.
We consider the case where we have a given data set D =
{(x1, y1), . . . , (xN , yN )} and we want to find a model f̂(x)
that approximates y at future observations of x. These future
observations are assumed to come from the same source that
generated the training set D, i.e. from the same (unknown)
probability distribution P . It should be noted that f depends
also on D. The expected generalization error Err(x, D) given
a particular x and a training set D is

Err(x, D) = E[(y − f̂(x))2|x, D], (2)

where the expectation E[·] is taken with respect to the
probability distribution P . We are now interested in

Err(x) = ED[Err(x, D)],

where the expectation ED[·] is taken with respect to all
possible realizations of training sets D with fixed sample size
N .
According to [8] the bias/variance decomposition is

Err(x) = σ2 + (ED[f̂(x)] − E[y|x])2

+ED[(f̂(x) − ED[f̂(x)])2] (3)

= σ2 + (Bias(f̂(x)))2 + V ar(f̂(x)),

where E[y|x] is the deterministic part of the data and σ2 is
the variance of y given x.
Important for our consideration is the variance term, which
could be decomposed in the following way:

V ar(f̂) = E
[

(f̂ − E[f̂ ])2
]

(4)

= E[(

K
∑

i=1

ωifi)
2] − (E[

K
∑

i=1

ωifi])
2

=
K

∑

i=1

ω2
i

(

E
[

f2
i

]

− E2 [fi]
)

+2
∑

i<j

ωiωj (E [fifj ] − E [fi] E [fj ]) ,

where the expectation is taken with respect to D. The first sum
in Equ. (4) marks the lower bound of the ensemble variance



and is the weighted mean of the variances of the ensemble
members. The second sum contains the cross-terms of the
ensemble members and vanishes if the models are completely
uncorrelated [1]. That shows that the reduction in the variance
of the ensemble is related to the degree of independence of
the single models [5].
There are several ways to introduce model diversity to the
ensemble in order to decorrelate the output of the individual
ensemble members. A general approach is to train various
models on selected subsets of the training data [4], [7] or
to initiate the training algorithm with randomly chosen initial
conditions [5]. A new approach was recently introduced by
Bakker et al. [9], where the ensemble consists of representative
models that are selected by clustering the model outputs.
We introduce model diversity in such a way, that we train
several model classes on different subsets of the training data,
using an extended cross validation scheme. An overview of
the different model classes that we use for ensemble building
is given in the next section.

III. MODELS

In this section we give a short overview about the models
that we use for ensemble building and the related training
procedures. The implementation of these models together with
a more detailed description can be found in [10].

A. Linear and Polynomial Models

The d-dimensional linear model has the form

f(~x) = a0 +

d
∑

i=1

aixi, (5)

where a0 is the offset. The coefficients are calculated with
the standard method for ridge regression (see Hastie et al.
[11] for a detailed description). The optimal ridge parameter
is evaluated by performing a cross-validation on the training
data.
The polynomial model is given by f(~x) =

∑P
i=1 aipi(~x),

wherein the monoms have the form pi(~x) =
∏d

i=1 xni

i . We
use an iterative term selection for the monoms wherein we add
successively the terms to the polynomial model that decrease
the out-of-sample error on a subset of the training data.

B. Nearest Neighbor Models

A k-Nearest-Neighbor model takes a weighted average over
those observations zi in the training set that are closest to the
query point ~x. This is,

f(~x) =
1

∑

wi

∑

~zi∈Nk(~x)

wizi, (6)

where Nk(~x) denotes the k-element neighborhood of ~x,
defined in a given metric. Common choices are the L1,
L2 and the L∞ metrics. To compensate for irrelevant input
dimensions, distances are computed using a weighted metric:

d(~x, ~z) = (

D
∑

i=1

mi(xi − zi)
M )

1

M 0 ≤ mi ≤ 1. (7)

The vector of metric coefficients ~m is adapted by a Genetic
Algorithm. One vector of metric coefficients is an individual
of the population. The fitness value is assigned to each
individual according to it’s error on the training data set. For
our investigation we used the fast nearest neighbor algorithm
ATRIA [12].

C. Nearest Trajectory Models

The nearest trajectory model is based on a strategy for time
series prediction introduced by McNames [13]. It is based on
the assumption that the time series stems from a dynamical
system and the states can be reconstructed with a time delay
embedding, which is possible for a large class of systems [14],
[15], [16].
The nearest trajectory model looks for the nearest trajectory
segments in the reconstructed state space instead of the nearest
neighbors. The prediction is done with a local linear model of
the closest trajectory points as described in [13]. The number
of neighboring trajectories is chosen randomly at the start of
the training algorithm.

D. Neural Networks

We use a multilayer feed-forward neural network (MLP:
Multi Layer Perceptron) with the tanh(~x) as nonlinear ele-
ment. In order to increase the ensemble ambiguity, we ini-
tialize the weights with Gaussian distributed random numbers
having zero mean and scaled variances, following a suggestion
of LeCun et al. [17]. The number of hidden layers is chosen
at random to be one or two and the numbers of neurons in
also random (3-9 Neurons in the first layer, 4-32 in second
layer). We use two different training procedures: A first order
training algorithm based on the Rprop Algorithm [18] with
the improvements given in [19]; The second order training
algorithm is a Levenberg Marquart Gradient Descent [17]. As
regularization method we use the common weight decay with
the penalty term

P (~w) = λ

N
∑

i=1

w2
i

1 + w2
i

, (8)

where ~w denotes the N -dimensional weight vector of the MLP
and the regularization parameter is small λ = 0.001.

E. Perceptron Radial Basis Net

Perceptron Radial Basis Net (PRBFN) is an extension
of MLP and Radial Basis Function (RBF) Networks. The
PRBFN combine RBF and sigmoid units in the hidden layers.
This hybrid network architecture together with a sophisticated
training procedure was introduced by Cohen and Intrator [20].
The number and the centers of the hidden units are generated
dynamically during the training and network parameters are
refined by gradient descent, as described in [20].



IV. MODEL BUILDING

A. Iterated Prediction of Time Series

If we consider an equidistant sampled time series
{xν}ν=1,...,N , we can construct a d-dimensional state space
vector ~xn in the form

~xn = (x(n−λ(d−1)), x(n−λ(d−2)), . . . , xn), (9)

where λ denotes the time lag. A “one-step ahead prediction”
model f(~x) for iterated time series prediction has the form

f : Rd → R

f(~xn) = xn+1. (10)

We perform the iterated prediction in such a way, that we
use the predicted value xn+1 to construct the next state space
vector ~xn+1 which is used to predict the next time series
sample xn+2 and so on. In this sense we define the 1-step
ahead prediction as f1, the 2-step ahead prediction as f 2 and
the n-step ahead prediction as fn.
In the field of nonlinear time series analysis, this method was
suggested by Farmer and Sidorowich [21] in order to make
short term predictions of chaotic systems.
A crucial question is the choice of the model class. If we
have no prior knowledge about the nature of the process
that generated the time series, we have to find a proper
model architecture with an out of sample test. This is done
during the model training. We train several models of different
model classes and select the best ones regarding the iterated
prediction error (see section IV-B).

B. Model Training and Cross Validation

In order to select models for the final ensemble we use
a cross-validation scheme for model training (see [11] for a
detailed discussion of the method). The cross validation is
done in several training rounds on different subsets of the
entire data set. In every training round the data is divided in

����

����

����

����

	�	


����


�
���

����

������

Training set

Training set

Training set

Test set

Test set

Test set

Training
Rounds

Fig. 1. In every training round the whole data set is divided in a training
and a test set.

a training set and a test set, which is used for selecting the
models for the final ensemble. Therefor we take the time series
and build a data set M of input-out pairs (~xi, yi), where the
inputs are the state space vectors defined in equation 9 and the
outputs are the one step ahead time series values yi = xi+1

from equation 10. We extract contiguous parts of length n

from the input-out pairs as test sets Mtest with

Mtest = {(~xi+µ, yi+µ)}µ=1,...,n

to calculate the n-step iterated prediction error. The remaining
part of the data Mtrain is used to train the models. In every

training round of the cross-validation procedure, we use a set
of different models that are initiated with randomly chosen
parameters1. Each model is now trained to minimize the one
step ahead prediction error

Etrain =
∑

i

(yi − f1(~xi))
2 (11)

where the sum is taken over all members of the training set
Mtrain. After the training each model fits (more or less) the
data.
Now we want to prevent over-fitting and select the best model
for the iterated prediction method. For that reason we kept
the contiguous test set Mtest. We calculate for every trained
model the mean squared error (MSE) for the n-step ahead
cross-validation

MSE =
1

n

n
∑

i=1

(yi − f i)2, (12)

where f i is the i-step ahead prediction, starting with the first
sample of the test set. We choose the model with the smallest
error to become a member of the final ensemble. If we repeat
this procedure K times, we get K different models, trained and
tested on different parts of the entire data set (see FigureIV-B).
These models are used to build the final ensemble

f̂(x) =

K
∑

i=1

1

K
fi(x). (13)

We use equal weights for each model to avoid over-fitting
problems, but other choices are also possible (see [3] and [1]
and the references therein).

V. MAIN RESULTS

We investigate two data sets with our modeling approach.
The first time series was part of the Leuven Competition [22]
and the second time series is the CATS benchmark from the
IJCNN 2004.

A. Chua’s Circuit

The data set was part of the time series competition of the
International Workshop on Advanced Black-Box Techniques
for Nonlinear Modeling in 1998 in Leuven, Belgium [22]. It
stems from a nonlinear transform of a 5-scroll generalized
Chua’s Circuit (see [23] for a detailed description). The data
set consists of 2000 points. We build an ensemble model based
on 30 cross-validation rounds, consisting of the models listed
in Section III. We build time-delay vectors with time lag λ = 1
and dimension d = 50 as defined in Equ. 9. The prediction
of the following 200 data points is shown in Figure 2. As a
measure of accuracy we used the Normalized Mean Squared
Error (NMSE) for the τ -step iterated prediction, that was
proposed by McNames [13]. It denotes as

NMSE(τ) =

1
nµ

∑nµ

i=1(yµi+τ − fτ (~xµi
))2

σ2(y)
, (14)

1These parameters are related to the certain model classes, for example the
number of nearest neighbors, the maximal order of monoms in a polynomial
model or the number of neurons in the hidden layers of the MLP.



2000 2050 2100 2150 2200
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time

oos−prediction
origin

Fig. 2. The 200-step prediction of the data from Chua’s Circuit and the
original time series. In this case the ensemble model was able to predict the
dynamics of the first 100 time steps.

where yµi+τ is the µi + τ point in the data set, µi is the first
point in the i-th contiguous validation segment and nµ is the
overall number of validation sets. The τ -step ahead prediction
starting with the point ~xµi

is denoted as f τ (~xµi
) and σ2(y)

is simply the variance of the data

σ2(y) =
1

n − 1

n
∑

i=1

(yi − ȳ)2 . (15)

The NMSE as a function of the prediction length τ has a
vivid interpretation. If the NMSE is close to one, the model
has lost its predictive power and we can also use the mean of
the time series as a simple predictor. This marks the prediction
horizon.
The average prediction horizon of our ensemble is approx-
imately 60 time steps which is comparable with the results
of the best models of the KU Leuven Competition [23]. The
NMSQ for the data set is shown in Figure 3. The final ensem-
ble consist of 30 single models, according to the 30 cross-
validation rounds. In detail we found 15 nearest trajectory
models, 7 nearest neighbor models, 6 neural networks and
2 PRBFN-networks.

B. The Cats Benchmark

The data set consists of an artificial Time Series with 5000
data points wherein 100 values are missing. These missing
values are divided in 5 blocks of 20 points that have to be
predicted. The time series is shown in Figure 4. By visual
inspection the time series shows an oscillatory regime on the
large scale that seems to be corrupted with a kind of noisy
random process on the small scale. A further investigation
shows that this noise has a deterministic structure that changes
over time, so it seems to be a stochastic process superposed
by the dominating large scale dynamics. In order to cope
with two dynamical systems we decided to split the prediction
problem in two parts. We first build a model for the large scale,
using a polynomial fit to cover the long term oscillations. The

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Timestep τ

N
M

S
E

(τ
)

Fig. 3. The NMSE versus τ , the number of iterated prediction steps for the
the data from Chua’s Circuit. The average prediction horizon of the ensemble
is approximately 60 time steps.

0 1000 2000 3000 4000 5000
−600

−400

−200

0

200

400

600

800

Fig. 4. The 5000 data points of the CATS Benchmark. The missing 100
points are left out in 5 blocks.

second step is focused on the noisy process where we build
an ensemble model for the small scale dynamics that uses the
iterated prediction scheme that we described above.

1) The Large Scale Model: As a first step we investigate
the proper window length w and the order of the polynomial
fit p for the first four blocks. This is done by a brute force
search of the parameter space. We fit a polynomial model of
order p to contiguous parts of the data set with the total length
2 ·w+20 where the 20 points in the middle are hold out from
the fitting procedure and the MSE of the fit is calculated using
these 20 points. This is done for several parts of the time series
around the missing blocks. The parameter combination with
the smallest MSE is used for the final fit of the missing points
in that particular gap. The results are reported in Table I.

2) The Small Scale Model: If we consider the small scale
dynamics as random noise then the polynomial fit described



Block Range Order p Window Length w

1 980:1000 3 16
2 1980:2000 4 40
3 2980:3000 4 16
4 3980:4000 5 30

TABLE I

THE ORDER AND WINDOW LENGTH OF THE POLYNOMIAL FIT USED FOR

THE MISSING POINTS IN THE FIRST FOUR BLOCKS.

960 970 980 990 1000 1010 1020
40

60

80

100

120

140

160

Time

A
m

pl
itu

de

Fig. 5. The combined prediction for the first block of the CATS Benchmark.
The solid line shows the polynomial fit and the circles show the added iterated
prediction.

above would be a good solution of the prediction problem in
the classical terms of statistics. But a further investigation of
the time series leads to the conclusion, that we can find a
deterministic part in the small scale dynamics that is covered
with noise. Let {xν}ν=1,...,N denote the original time series.
We build the series of sequencing differences

x∗

n := xn − xn−1, (16)

and generate the d-dimensional state space vectors ~x∗

n as
defined in Equ. 9. With this data set we construct a one-step
ahead prediction model according to Equ. 10. We build simple
ridge regression models for this purpose, because we only want
to have an indication, if there is some deterministic part in the
data. Further these models can be trained very fast and are
known to be robust in the presence of noise.
The models are trained on 200 consecutive data points and
the following 100 data points are used to perform an out-of-
sample test. We compute the NMSE from Equ. 14 with τ = 1
(one-step ahead prediction) for several segments of the time
series. The results are shown in Fig. 6. The NMSE is lying
below 0.9 for almost all tested segments.
We compare these results with the NMSE for a surrogate
data set that we achieve by randomly shuffling the time
series of sequencing differences from Equ. 16. This procedure
destroys the time order of the series and the average NMSE
for the linear models that are trained and performed on the
randomized data set is closed to one. This is exactly what

0 1000 2000 3000 4000 5000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Time

N
M

S
E

Fig. 6. The NMSE for several segments of the time series. Each dot marks the
end of a segment with 300 data points. The average NMSE for the randomized
data set is 0.98 (solid line) with a standard deviation of 0.046 shown as dotted
lines.

we expect for a purely random process and it is a strong
evidence, that the lower value of the NMSE for the series of
sequencing differences is not an overfitting effect. This leads
to the conjecture, that the small scale dynamics is not purely
random noise but has a weak deterministic part, that could be
described by a proper model.
In the above case the method of surrogate data acts as an in-
dicator for determinism, while it is usually used to distinguish
nonlinear determinism from a linear stochastic process [24].
For the small scale model we build state space vectors with
d = 14 and perform an iterated 20-step ahead prediction.
The results of the iterated prediction is combined with the
polynomial fit described above to close the fore gaps of the
CATS time series. The last 20 missing points are based on
a pure iterated prediction without a polynomial fit. As an
example we show the combined model for the first gap in
Figure 5.

VI. CONCLUSION

We have demonstrated that ensembles models together with
an iterated prediction procedure for model selection provides
a powerful tool for time series prediction. The performance on
KU Leuven Competition shows that this method can compete
against the methods that are known to perform well on this
data set. For the CATS Benchmark we used an advanced model
building procedure that combines the robust polynomial fit of
the large scale dynamics with an iterated ensemble prediction
of the small scale dynamics.

ACKNOWLEDGMENTS

The authors like to thank C. Merkwirth for fruitful discus-
sions. The work was done as part of the Research Training
Network COSYC of SENS No. HPRN-CT-2000-00158 within
the 5th EU Framework Program of the European Community.
This research has been also supported by AGH-University of
Science and Technology grant 11.11.120.182.



REFERENCES

[1] A. Krogh and P. Sollich, “Statistical mechanics of ensemble learning,”
Physical Review E, vol. 55, no. 1, pp. 811–825, 1997.

[2] L. Hansen and P. Salamon, “Neural Network Ensembles,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–
1001, 1990.

[3] M. P. Perrone and L. N. Cooper, “When Networks Disagree: Ensemble
Methods for Hybrid Neural Networks,” in Neural Networks for Speech
and Image Processing, R. J. Mammone, Ed. Chapman-Hall, 1993, pp.
126–142.

[4] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation,
and active learning,” in Advances in Neural Information Processing
Systems, G. Tesauro, D. Touretzky, and T. Leen, Eds., vol. 7. The
MIT Press, 1995, pp. 231–238.

[5] U. Naftaly, N. Intrator, and D. Horn, “Optimal ensemble averaging of
neural networks,” Network, Comp. Neural Sys., vol. 8, pp. 283–296,
1997.

[6] G. Valentini and T. Dietterich, “Bias-variance analysis and ensembles of
svm,” in Third International Workshop on Multiple Classifier Systems,
ser. Lecture Notes in Computer Science, J. Kittler and F. Roli, Eds.
New York: Springer Verlag, 2002, vol. 2364, pp. 222–231.

[7] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, 1996.

[8] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Computation, vol. 4, pp. 1–58, 1992.

[9] B. Bakker and T. Heskes, “Clustering ensembles of neural network
models,” Neural Networks, vol. 16, no. 2, pp. 261–269, 2003.

[10] C. Merkwirth and J. Wichard, “ENTOOL - A Matlab
Toolbox for Ensemble Modeling,” 2002. [Online]. Available:
http://chopin.zet.agh.edu.pl/˜wichtel/

[11] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics. Springer-Verlag, 2001.

[12] C. Merkwirth, U. Parlitz, and W. Lauterborn, “Fast exact and approxi-
mate nearest neighbor searching for nonlinear signal processing,” Phys.
Rev. E, vol. 62, no. 2, pp. 2089–2097, 2000.

[13] J. McNames, “A nearest trajectory strategy for time series prediction,”
in Proceedings of the International Workshop on Advanced Black-Box
Techniques for Nonlinear Modeling. K. U. Leuven Belgium, 1998.

[14] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence, ser. Lect. Notes Math. Berlin: Sringer-Verlag,
1981.

[15] T. Sauer, J. Yorke, and M. Casdagli, “Embedology,” J.Stat.Phys., vol. 65,
pp. 579–618, 1991.

[16] J. Stark, D. Broomhead, M. Davies, and J. Huke, “Takens embedding
theorems for forced and stochastic systems,” Nonlinear Analysis, vol. 30,
pp. 5303–5314, 1997.

[17] Y. LeCun, L. Bottou, G. Orr, and K. Müller, “Efficient BackProp,” in
Neural Networks: Tricks of the trade, ser. Lecture Notes in Computer
Science, G. Orr and K. Mller, Eds. Springer Verlag, 1998, vol. 1524,
pp. 9–50.

[18] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in Proc. of the IEEE
Intl. Conf. on Neural Networks, San Francisco, CA, 1993, pp. 586–591.

[19] C. Igel and M. Hüsken, “Improving the Rprop Learning Algorithm,” in
Proceedings of the Second International ICSC Symposium on Neural
Computation (NC 2000), H. Bothe and R. Rojas, Eds. ICSC Academic
Press, 2000, pp. 115–121.

[20] S. Cohen and N. Intrator, “Automatic model selection in a hybrid
perceptron/radial network,” in Multiple Classifier Systems, ser. Lecture
Notes in Computer Science, F. R. J. Kittler, Ed. Springer Verlag, 2001,
vol. 2096, pp. 440–454.

[21] J. Farmer and J. Sidorowich, “Predicting chaotic time series,” Phys. Rev.
Lett., vol. 59(8), pp. 845 – 848, 1987.

[22] Proceedings of the International Workshop on Advanced Black-Box
Techniques for Nonlinear Modeling. K. U. Leuven Belgium, 1998.

[23] J. McNames, J. Suykens, and J. Vandewalle, “Winning Entry of the K.U.
Leuven Time Series Prediction Competition,” International Journal of
Bifurcation and Chaos, vol. 9, no. 8, pp. 1485–1500, 1999.

[24] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Farmer, “Testing
for nonlinearity in time series: The method of surrogate data,” Physica
D, vol. 58, pp. 77–94, 1992.


